Circularity

Circularity provides a holistic focus on a complete and closed resource life cycle. A cycle does not have a terminal event involving 'disposal' and generation of 'waste'. Circularity is related to sustainability but is fundamentally different. Sustainability focuses on rationing and is thus zero sum while circularity focuses on regeneration of functional resources rather than consumption.

Sustainable Water Resource Management: A Future Flood Inundation Example

Sustainability is meeting the needs of the present without jeopardizing quality of life for future generations. Adaptation is adjustment of resource utilization and planning by current generations to ensure sustainability. Mitigation, for this study, narrowly refers to damage repair and restoration costs incurred after natural hazard occurrence. Climate is dynamic and ever changing. Recent observed changes in weather patterns identify that drought and intense precipitation, leading to flooding, are more likely to occur in the near future. An example dynamic probabilistic risk assessment (PRA) for flood inundation is created and applied to understand benefits to, and limitations on, PRA for sustainable water resource management. This example addresses the issue of sustainable decision making related to outdated, but historically regulatory compliant, infrastructure. The observed increase in likelihood for large floods means that many assets were designed for inapplicable conditions and are more likely to be damaged in the future. Results from this example PRA demonstrate that it provides for optimizing the degree of sustainability included in resource management and decision making. Sustainability optimization is obtained by balancing likelihood for future mitigation costs against potential cost savings garnered from present-day adaptation.